论文标题

角膜细胞计数的显微镜图像的盲目脱毛

Blind De-Blurring of Microscopy Images for Cornea Cell Counting

论文作者

Tchelet, Alon, Mussa, Leonardo, Vojinovic, Stefano

论文摘要

角膜细胞计数是从业人员通常使用的重要诊断工具来评估患者角膜的健康。不幸的是,临床镜面显微镜需要在不同的焦点深度中获取大量图像,因为角膜的弯曲形状使得无法获得单个全焦点图像。本文介绍了两种方法及其实现,以减少运行蜂窝计数算法所需的图像数量,从而缩短检查持续时间并增加患者的舒适性。基本思想是在原始图像上应用脱毛技术来重建异常区域并扩大图像的尖锐区域。我们的方法基于盲目卷积重建,该重建执行了深度范围的深度,因此可以模拟高斯内核或从临时查找表中拟合内核。

Cornea cell count is an important diagnostic tool commonly used by practitioners to assess the health of a patient's cornea. Unfortunately, clinical specular microscopy requires the acquisition of a large number of images at different focus depths because the curved shape of the cornea makes it impossible to acquire a single all-in-focus image. This paper describes two methods and their implementations to reduce the number of images required to run a cell-counting algorithm, thus shortening the duration of the examination and increasing the patient's comfort. The basic idea is to apply de-blurring techniques on the raw images to reconstruct the out-of-focus areas and expand the sharp regions of the image. Our approach is based on blind-deconvolution reconstruction that performs a depth-from-deblur so to either model Gaussian kernel or to fit kernels from an ad hoc lookup table.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源