论文标题

异国情调的费米原场和最小长度

Exotic fermionic fields and minimal length

论文作者

da Silva, J. M. Hoff, Beghetto, D., Cavalcanti, R. T., da Rocha, R.

论文摘要

我们研究了有效的DIRAC方程,该方程通过合并了两个方案,这些方案有望朝着量子重力量表出现。也就是说,由普遍的不确定性原理和外来旋转器实现的最小长度的存在,这些旋转旋转器与任何非平凡的拓扑结构相关,为时空歧管提供了。我们表明,在最小长度的上下文中,自由的效费动力学方程只需允许琐碎的解决方案,这是一个由外来纺纱器的动态方程共享的特征。实际上,在这种合并设置中,外来性被证明是为了防止狄拉克操作员具有侵入性,从而允许存在非平凡的溶液。

We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源