论文标题
在一般状态空间上的一类非线性隐藏马尔可夫模型的精确推断
Exact inference for a class of non-linear hidden Markov models on general state spaces
论文作者
论文摘要
隐藏的马尔可夫模型的精确推断需要评估所有兴趣分布的分布 - 过滤,预测,平滑和可能性,并通过有限的计算工作。本文提供了足够的条件,以确切推断一类在一般状态空间上的隐藏马尔可夫模型,并且给定一组与信号无线性链接的离散收集的间接观测值以及一组用于推理的实用算法。我们获得的条件与某种类型的双重过程有关,这是信号逆转时间嵌入的辅助过程,这又允许表示感兴趣的分布和功能作为基本密度或其产品的有限混合物。我们明确描述了如何递归涉及的参数,从而在定性上与用Baum获得的结果相似,结果在有限状态空间上获得了welch滤波器。然后,我们提供实施递归的实用算法,并通过对混合物的知情修剪进行近似,并在准确性和计算效率方面表现出较高的性能。 Julia软件包DualOptimalFiltering提供了最佳过滤,平滑和参数推理的代码。
Exact inference for hidden Markov models requires the evaluation of all distributions of interest - filtering, prediction, smoothing and likelihood - with a finite computational effort. This article provides sufficient conditions for exact inference for a class of hidden Markov models on general state spaces given a set of discretely collected indirect observations linked non linearly to the signal, and a set of practical algorithms for inference. The conditions we obtain are concerned with the existence of a certain type of dual process, which is an auxiliary process embedded in the time reversal of the signal, that in turn allows to represent the distributions and functions of interest as finite mixtures of elementary densities or products thereof. We describe explicitly how to update recursively the parameters involved, yielding qualitatively similar results to those obtained with Baum--Welch filters on finite state spaces. We then provide practical algorithms for implementing the recursions, as well as approximations thereof via an informed pruning of the mixtures, and we show superior performance to particle filters both in accuracy and computational efficiency. The code for optimal filtering, smoothing and parameter inference is made available in the Julia package DualOptimalFiltering.