论文标题

数据驱动的断裂力学

Data-driven fracture mechanics

论文作者

Carrara, Pietro, De Lorenzis, Laura, Stainier, Laurent, Ortiz, Michael

论文摘要

我们提出了一个新的数据驱动范式,用于变异脆性断裂力学。删除与裂缝相关的材料建模假设,并将因各种原理与一组离散的数据点相结合,导致无模型数据驱动的解决方案方法。在给定负载步骤下的解决方案被确定为数据集中最能满足库恩 - 塔克条件的点,这是由于变异性断裂问题或适当的能量功能的全球最小化所引起的,从而导致数据驱动的局部性和全局最小化方法的数据驱动对应物。两种配方均在具有和没有噪声的不同测试配置以及Griffith和R-Curve型断裂行为上进行测试。

We present a new data-driven paradigm for variational brittle fracture mechanics. The fracture-related material modeling assumptions are removed and the governing equations stemming from variational principles are combined with a set of discrete data points, leading to a model-free data-driven method of solution. The solution at a given load step is identified as the point within the data set that best satisfies either the Kuhn-Tucker conditions stemming from the variational fracture problem or global minimization of a suitable energy functional, leading to data-driven counterparts of both the local and the global minimization approaches of variational fracture mechanics. Both formulations are tested on different test configurations with and without noise and for Griffith and R-curve type fracture behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源