论文标题

Zappa-Szép跌落捆绑包和群体的产品

Zappa-Szép product of a Fell bundle and a groupoid

论文作者

Duwenig, Anna, Li, Boyu

论文摘要

我们定义了一个由群体固定的Zappa-szép产品,这是基础类固醇的Zappa-szép产品的倒束束。在某些假设下,以这种方式出现了群体素的Zappa-szép产品的每一个捆绑。然后,我们研究与Zappa-szép产品Fly Bundle相关的表示形式,并显示其与协变为代表的关系。最后,我们研究了相关的通用c* - 代数,事实证明这是c* - 蓝色,概括了较早的结果,该结果介绍了c.*-algebras的Zappa-Szép产品。在离散组的情况下,fell束的通用c*代数嵌入了Zappa-Szép产品的通用C*-Algebra中。

We define the Zappa-Szép product of a Fell bundle by a groupoid, which turns out to be a Fell bundle over the Zappa-Szép product of the underlying groupoids. Under certain assumptions, every Fell bundle over the Zappa-Szép product of groupoids arises in this manner. We then study the representation associated with the Zappa-Szép product Fell bundle and show its relation to covariant representations. Finally, we study the associated universal C*-algebra, which turns out to be a C*-blend, generalizing an earlier result about the Zappa-Szép product of groupoid C*-algebras. In the case of discrete groups, the universal C*-algebra of a Fell bundle embeds injectively inside the universal C*-algebra of the Zappa-Szép product Fell bundle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源