论文标题
稳定的梯度kähler-icci solitons在卡拉比yau锥的切蛋白酶的分辨率上
Steady gradient Kähler-Ricci solitons on crepant resolutions of Calabi-Yau cones
论文作者
论文摘要
我们表明,直到索利顿矢量场的流动,在每个卡拉比yau锥体的carabi-yau锥体分辨率下,在每一个kähler类中都存在独特的完全稳定的梯度kähler-ricci soliton,以cao的稳定梯度Kähler-riccici soliton收敛。
We show that, up to the flow of the soliton vector field, there exists a unique complete steady gradient Kähler-Ricci soliton in every Kähler class of an equivariant crepant resolution of a Calabi-Yau cone converging at a polynomial rate to Cao's steady gradient Kähler-Ricci soliton on the cone.