论文标题
地球热辐射对五种最丰富的温室气体的依赖性
Dependence of Earth's Thermal Radiation on Five Most Abundant Greenhouse Gases
论文作者
论文摘要
地球上五个最重要的,温室气体的大气温度和浓度,h $ _2 $ o,co $ _2 $,o $ _3 $,n $ _2 $ o和ch $ _4 $控制从地球到外部空间的无云,热辐射通量。超过1/3万行的优势低至$ 10^{-27} $ cm的Hitran数据库,用于评估强迫对气体浓度的依赖性。对于一种假设的,光学上的薄氛围,吸收带的饱和度可忽略不计或一种类型的温室气干扰其他人,每种分子的强制性的订单为$ 10^{ - 22} $ W,h $ _2 $ o,co $ _2 $,co $ _2 $,o $ $ _3 $ _3 $ _3 $,n $ _2 $ _2 $ _2 $ _4 $ _4。对于当前的大气浓度,丰富的温室气体h $ _2 $ o和co $ _2 $的每分子强迫被四个数量级抑制。也抑制了较少的温室气体,o $ _3 $,n $ _2 $ o和ch $ _4 $的强迫,也被抑制了,但要少得多。对于目前的浓度,与H $ _2 $ O或CO $ _2 $相比,O $ _3 $,n $ _2 $ o和ch $ _4 $的每分子强制性的数量大于2至三个数量级。将CO $ _2 $,N $ _2 $ O或CH $ _4 $的当前浓度增加一倍,这将Forcings增加了几%。即使计算没有使用CO $ _2 $或H $ _2 $ o Continuum,这些强迫结果也接近先前发布的值。考虑到大气的辐射对立平衡以及对固定绝对和相对湿度的情况以及使用假性隔热率降低速率的效果以模拟对流层温度的效果,据估计,CO $ _2 $加倍的表面温度的变化以及水反馈的辐射反向平衡估计。各种纬度的卫星光谱测量与建模强度具有极好的定量一致性。
The atmospheric temperatures and concentrations of Earth's five most important, greenhouse gases, H$_2$O, CO$_2$, O$_3$, N$_2$O and CH$_4$ control the cloud-free, thermal radiative flux from the Earth to outer space. Over 1/3 million lines having strengths as low as $10^{-27}$ cm of the HITRAN database were used to evaluate the dependence of the forcing on the gas concentrations. For a hypothetical, optically thin atmosphere, where there is negligible saturation of the absorption bands, or interference of one type of greenhouse gas with others, the per-molecule forcings are of order $10^{-22}$ W for H$_2$O, CO$_2$, O$_3$, N$_2$O and CH$_4$. For current atmospheric concentrations, the per-molecule forcings of the abundant greenhouse gases H$_2$O and CO$_2$ are suppressed by four orders of magnitude. The forcings of the less abundant greenhouse gases, O$_3$, N$_2$O and CH$_4$, are also suppressed, but much less so. For current concentrations, the per-molecule forcings are two to three orders of magnitude greater for O$_3$, N$_2$O and CH$_4$, than those of H$_2$O or CO$_2$. Doubling the current concentrations of CO$_2$, N$_2$O or CH$_4$ increases the forcings by a few per cent. These forcing results are close to previously published values even though the calculations did not utilize either a CO$_2$ or H$_2$O continuum. The change in surface temperature due to CO$_2$ doubling is estimated taking into account radiative-convective equilibrium of the atmosphere as well as water feedback for the cases of fixed absolute and relative humidities as well as the effect of using a pseudoadiabatic lapse rate to model the troposphere temperature. Satellite spectral measurements at various latitudes are in excellent quantitative agreement with modelled intensities.