论文标题
半设备依赖性盲量层析成像
Semi-device-dependent blind quantum tomography
论文作者
论文摘要
提取有关量子状态的层析成像信息是要设计高精度量子设备的关键任务。当前的方案通常需要对层析成像进行测量设备,这些设备是先验校准至高精度的。具有讽刺意味的是,测量校准的准确性在根本上受到状态制备的准确性并建立恶性循环的限制。在这里,我们证明该周期可能会被打破,并且对测量装置的校准的依赖性显着放松。我们表明,利用感兴趣的量子状态的自然低级结构足以通过具有经典高效的后处理算法得出高度可扩展的“盲”层析成像方案。我们通过利用校准的稀疏结构来进一步提高计划的效率。这是通过放松盲量层析成像问题来实现的,以使稀疏的低级矩阵总和脱混合。我们证明,所提出的算法恢复了低级别量子状态,并且校准只要测量模型表现出受限制的等轴测特性。对于通用测量,我们表明它需要几乎最佳的测量设置。与这些概念和数学见解相辅相成,我们从数值上证明,在受捕获离子的实现启发的实践环境中,有稳定的盲量层析成像是可能的。
Extracting tomographic information about quantum states is a crucial task in the quest towards devising high-precision quantum devices. Current schemes typically require measurement devices for tomography that are a priori calibrated to high precision. Ironically, the accuracy of the measurement calibration is fundamentally limited by the accuracy of state preparation, establishing a vicious cycle. Here, we prove that this cycle can be broken and the dependence on the measurement device's calibration significantly relaxed. We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable `blind' tomography scheme with a classically efficient post-processing algorithm. We further improve the efficiency of our scheme by making use of the sparse structure of the calibrations. This is achieved by relaxing the blind quantum tomography problem to the de-mixing of a sparse sum of low-rank matrices. We prove that the proposed algorithm recovers a low-rank quantum state and the calibration provided that the measurement model exhibits a restricted isometry property. For generic measurements, we show that it requires a close-to-optimal number of measurement settings. Complementing these conceptual and mathematical insights, we numerically demonstrate that robust blind quantum tomography is possible in a practical setting inspired by an implementation of trapped ions.