论文标题

关于算术进程的Borwein型多项式系数的总和

On sums of coefficients of Borwein type polynomials over arithmetic progressions

论文作者

Li, Jiyou, Yu, Xiang

论文摘要

我们获得了在形式多项式系数的算术上的总和的渐近公式 $$ \ prod_ {j = 1}^n \ prod_ {k = 1}^{p-1}(1-q^{pj-k})^s,$$ 其中$ p $是一个奇怪的素数,而$ n,s $是正整数。让我们用$ a_i $表示上述多项式中$ q^i $的系数,并假设$ b $是整数。我们证明了这一点 $ \ big | \ sum_ {i \ equiv b \ \ text {mod} \ 2pn} a_i- \ frac {v(b)p^{sn}}} {2pn} {2pn} \ big | \ big | \ leq p^{sn/2},$$ 其中$ v(b)= p-1 $如果$ b $由$ p $和$ v(b)= -1 $除外。这改善了Goswami和Pantangi的最新结果。

We obtain asymptotic formulas for sums over arithmetic progressions of coefficients of polynomials of the form $$\prod_{j=1}^n\prod_{k=1}^{p-1}(1-q^{pj-k})^s,$$ where $p$ is an odd prime and $n, s$ are positive integers. Let us denote by $a_i$ the coefficient of $q^i$ in the above polynomial and suppose that $b$ is an integer. We prove that $$\Big|\sum_{i\equiv b\ \text{mod}\ 2pn}a_i-\frac{v(b)p^{sn}}{2pn}\Big|\leq p^{sn/2},$$ where $v(b)=p-1$ if $b$ divisible by $p$ and $v(b)=-1$ otherwise. This improves a recent result of Goswami and Pantangi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源