论文标题
复杂系统的为什么,如何和何时
The why, how, and when of representations for complex systems
论文作者
论文摘要
复杂的系统思维应用于从神经科学到计算机科学和经济学的各种领域。各种各样的实施都带来了两个关键挑战:许多特定领域的策略的祖化很少被重新审视或质疑,以及由于复杂的系统语言的不一致而导致域中思想的散光。在这项工作中,我们提供了基本的,域形的语言,以迈向更具凝聚力的词汇。我们使用这种语言来评估复杂系统分析管道的每个步骤,从收集的系统和数据开始,然后遍历不同的数学形式主义,以编码观察到的数据(即图形,简单复合物和超级绘制),以及每种形式主义的相关计算方法。在每个步骤中,我们考虑不同类型的\ emph {depentencies};这些是系统的属性,它们描述了系统部分之间一个关系的存在如何影响另一个关系的存在。我们讨论如何出现依赖性以及它们如何改变结果的解释或整个分析管道。我们使用共同验证数据和电子邮件通信数据结合了两个现实世界的示例,这些数据说明了正在研究的系统,其中的依赖项,研究问题以及数学表示的选择如何影响结果。我们希望这项工作可以为经验丰富的复杂科学家提供反思的机会,并为新研究人员提供介绍性资源。
Complex systems thinking is applied to a wide variety of domains, from neuroscience to computer science and economics. The wide variety of implementations has resulted in two key challenges: the progenation of many domain-specific strategies that are seldom revisited or questioned, and the siloing of ideas within a domain due to inconsistency of complex systems language. In this work we offer basic, domain-agnostic language in order to advance towards a more cohesive vocabulary. We use this language to evaluate each step of the complex systems analysis pipeline, beginning with the system and data collected, then moving through different mathematical formalisms for encoding the observed data (i.e. graphs, simplicial complexes, and hypergraphs), and relevant computational methods for each formalism. At each step we consider different types of \emph{dependencies}; these are properties of the system that describe how the existence of one relation among the parts of a system may influence the existence of another relation. We discuss how dependencies may arise and how they may alter interpretation of results or the entirety of the analysis pipeline. We close with two real-world examples using coauthorship data and email communications data that illustrate how the system under study, the dependencies therein, the research question, and choice of mathematical representation influence the results. We hope this work can serve as an opportunity of reflection for experienced complexity scientists, as well as an introductory resource for new researchers.