论文标题
贝叶斯对模块化黑盒系统的优化,其切换成本
Bayesian optimization for modular black-box systems with switching costs
论文作者
论文摘要
大多数现有的黑盒优化方法都假定,要优化的系统中的所有变量都具有相同的成本,并且在每次迭代时都可以自由变化。但是,在许多现实世界系统中,输入是通过一系列不同的操作或模块传递的,在处理更新更为昂贵的早期阶段的变量。这种结构在数据处理管道的早期部分切换变量施加了成本。在这项工作中,我们提出了一种新算法,用于开关成本吸引的优化,称为懒惰模块化贝叶斯优化(LAMBO)。该方法有效地识别了全局最佳选择,同时通过在早期模块中的变量进行被动变化来最大程度地减少成本。该方法是理论上的扎根,并在转换成本增强时使后悔消失了。我们将LAMBO应用于多个合成功能,以及在神经科学应用中使用的三阶段图像分割管道,在此中,我们可以在其中获得对现成的成本吸引的贝叶斯优化算法的有希望的改进。我们的结果表明,兰博是黑盒优化的有效策略,能够最大程度地减少模块化系统中的切换成本。
Most existing black-box optimization methods assume that all variables in the system being optimized have equal cost and can change freely at each iteration. However, in many real world systems, inputs are passed through a sequence of different operations or modules, making variables in earlier stages of processing more costly to update. Such structure imposes a cost on switching variables in early parts of a data processing pipeline. In this work, we propose a new algorithm for switch cost-aware optimization called Lazy Modular Bayesian Optimization (LaMBO). This method efficiently identifies the global optimum while minimizing cost through a passive change of variables in early modules. The method is theoretical grounded and achieves vanishing regret when augmented with switching cost. We apply LaMBO to multiple synthetic functions and a three-stage image segmentation pipeline used in a neuroscience application, where we obtain promising improvements over prevailing cost-aware Bayesian optimization algorithms. Our results demonstrate that LaMBO is an effective strategy for black-box optimization that is capable of minimizing switching costs in modular systems.