论文标题

在不连续的Galerkin时域方法中,具有平稳变化系数的完美匹配层的记忆有效实现

A Memory-efficient Implementation of Perfectly Matched Layer with Smoothly-varying Coefficients in Discontinuous Galerkin Time-Domain Method

论文作者

Chen, Liang, Ozakin, Mehmet Burak, Ahmed, Shehab, Bagci, Hakan

论文摘要

将计算域与完美匹配的层(PML)包装是模仿/近似麦克斯韦和波方程求解器中辐射边界条件的最有效方法之一。许多PML实现通常使用平滑的衰减系数来增加给定层厚度的吸收,同时减少计算域和PML之间界面的数值反射。在不连续的Galerkin时域(DGTD)方法中,使用在网格元素内变化的PML系数需要为每个元素存储不同的质量矩阵,因此可以显着增加内存足迹。在这项工作中,通过对这些质量矩阵施加重量调整的近似值来解决此瓶颈。所得的DGTD方案具有与存储单个质量矩阵的方案相同的优势,即更高的精度(由于数值降低)和提高的网格灵活性(因为不必按层定义PML),但需要较小的内存。

Wrapping a computation domain with a perfectly matched layer (PML) is one of the most effective methods of imitating/approximating the radiation boundary condition in Maxwell and wave equation solvers. Many PML implementations often use a smoothly-increasing attenuation coefficient to increase the absorption for a given layer thickness, and, at the same time, to reduce the numerical reflection from the interface between the computation domain and the PML. In discontinuous Galerkin time-domain (DGTD) methods, using a PML coefficient that varies within a mesh element requires a different mass matrix to be stored for every element and therefore significantly increases the memory footprint. In this work, this bottleneck is addressed by applying a weight-adjusted approximation to these mass matrices. The resulting DGTD scheme has the same advantages as the scheme that stores individual mass matrices, namely higher accuracy (due to reduced numerical reflection) and increased meshing flexibility (since the PML does not have to be defined layer by layer) but it requires significantly less memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源