论文标题
量子算法,用于模拟哈密顿动力学,以偏外系列的扩展
Quantum Algorithm for Simulating Hamiltonian Dynamics with an Off-diagonal Series Expansion
论文作者
论文摘要
我们提出了一种有效的量子算法,用于模拟一般哈密顿系统的动力学。我们的技术基于以其非对角线方式扩展时间进化操作员的功率系列。该扩展将由于哈密顿量的对角线成分引起的动力学与其非对角线生成的动力学相反,我们使用一级技术的线性组合对其进行编码。我们的方法对所需的精度具有最佳的依赖性,并且正如我们所说明的那样,通常需要的资源要比当前最新的资源少得多。我们为多种示例模型提供了资源成本的分析。
We propose an efficient quantum algorithm for simulating the dynamics of general Hamiltonian systems. Our technique is based on a power series expansion of the time-evolution operator in its off-diagonal terms. The expansion decouples the dynamics due to the diagonal component of the Hamiltonian from the dynamics generated by its off-diagonal part, which we encode using the linear combination of unitaries technique. Our method has an optimal dependence on the desired precision and, as we illustrate, generally requires considerably fewer resources than the current state-of-the-art. We provide an analysis of resource costs for several sample models.