论文标题

基于多个数据来源的运输乘客旅行模式开采和应用的关键技术研究

Study on Key Technologies of Transit Passengers Travel Pattern Mining and Applications based on Multiple Sources of Data

论文作者

Liu, Yongxin

论文摘要

在这项研究中,我们提出了一系列方法来挖掘运输骑士的旅行模式和行为偏好,然后我们使用这些知识来调整和优化过境系统。贡献是:1)提高数据有效性:a)我们提出了一种新的方法,以纠正AFC(自动票价)系统与AVL(自动化车辆位置)系统之间数据的时间差异,我们的方法将数据事件转化为信号并应用时间域相关性检测和纠正其相对差异。 b)通过将历史数据和乘客票务票房结合起来,我们在AVL数据集中诱导并补偿丢失的信息。 2)为了推断乘客下降点,我们引入了一个最大的概率模型,该模型纳入了乘客家中的位置,以从半完整的登机记录中恢复其完整的过境轨迹。最后,我们分析了过境乘客的时间空间特征。 3)发现乘客旅行需求。我们在数天内集成了每个乘客轨迹数据,并构建混合旅行图(HTG)。然后,我们使用深度搜索算法来得出空间封闭的过境跳闸链。最后,我们使用乘客的封闭式过境链条从各个角度研究其旅行模式。最后,我们通过汇总乘客关键交通链来分析城市运输走廊。4)我们得出了八个影响因素,然后在各种情况下构建了乘客选择模型。接下来,我们使用乘客重新分配模拟验证模型。最后,我们对乘客的时间选择偏好进行了全面的分析,并使用此信息来优化城市运输系统。

In this research, we propose a series of methodologies to mine transit riders travel pattern and behavioral preferences, and then we use these knowledges to adjust and optimize the transit systems. Contributions are: 1) To increase the data validity: a) we propose a novel approach to rectify the time discrepancy of data between the AFC (Automated Fare Collection) systems and AVL (Automated Vehicle Location) system, our approach transforms data events into signals and applies time domain correlation the detect and rectify their relative discrepancies. b) By combining historical data and passengers ticketing time stamps, we induct and compensate missing information in AVL datasets. 2) To infer passengers alighting point, we introduce a maximum probabilistic model incorporating passengers home place to recover their complete transit trajectory from semi-complete boarding records.Then we propose an enhance activity identification algorithm which is capable of specifying passengers short-term activity from ordinary transfers. Finally, we analyze the temporal-spatial characteristic of transit ridership. 3) To discover passengers travel demands. We integrate each passengers trajectory data in multiple days and construct a Hybrid Trip Graph (HTG). We then use a depth search algorithm to derive the spatially closed transit trip chains; Finally, we use closed transit trip chains of passengers to study their travel pattern from various perspectives. Finally, we analyze urban transit corridors by aggregating the passengers critical transit chains.4) We derive eight influential factors, and then construct passengers choice models under various scenarios. Next, we validate our model using ridership re-distribute simulations. Finally, we conduct a comprehensive analysis on passengers temporal choice preference and use this information to optimize urban transit systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源