论文标题
在有限的石墨烯薄片和有限温度下以相互作用的量子大厅状态相互作用
Interacting quantum Hall states in a finite graphene flake and at finite temperature
论文作者
论文摘要
整数量子大厅在填充物上$ν= 0 $和$ |ν| =单层石墨烯中的1 $在通过电子电子相互作用产生时引起了很多关注。在这里,我们探索$ν= 0 $和$ |ν|的各个方面= 1 $量子大厅状态与实验样品相关。特别是,我们研究有限范围和有限温度对$ν= 0 $状态和有限温度的影响$ν= 1 $状态。对于$ν= 0 $状态,我们考虑了散装是倾斜的抗铁磁铁的情况,并且使用与大容量间隙测量的参数,以研究倾斜磁场中的边缘状态,以便与实验进行比较[A. A. A. F. Young等人,Nature 505,528(2014)]。当考虑到订单参数的空间调制时,我们发现,对于放置在氮化硼上的石墨烯,边缘的间隙闭合了与实验中的磁场相当的磁场,从而通过$ g \ sim 2e^2/h $引起到边缘传导,而散装差距几乎保持不变。我们还研究了在有限温度和场上向有序状态的过渡。我们确定临界温度作为磁场,$ b $的函数的缩放尺度,以及与零场临界点的距离,并找到具有磁场的sublinear缩放,以弱和中间强度相互作用,以及$ \ sqrt {b} $缩放在与零场量子量子量子量相关的耦合处。我们还预测,$ν= 0 $状态的临界温度应比$ |ν|的数量级高。 = 1 $状态,与$ν= 0 $的低温差距大约比$ |ν|大的数量级要大的事实一致。 = 1 $。
The integer quantum Hall states at fillings $ν= 0$ and $|ν| = 1$ in monolayer graphene have drawn much attention as they are generated by electron-electron interactions. Here we explore aspects of the $ν= 0$ and $|ν| = 1$ quantum Hall states relevant for experimental samples. In particular, we study the effects of finite extent and finite temperature on the $ν= 0$ state and finite temperature for the $ν= 1$ state. For the $ν= 0$ state we consider the situation in which the bulk is a canted antiferromagnet and use parameters consistent with measurements of the bulk gap to study the edge states in tilted magnetic fields in order to compare with experiment [A. F. Young et al., Nature 505, 528 (2014)]. When spatial modulation of the order parameters is taken into account, we find that for graphene placed on boron nitride, the gap at the edge closes for magnetic fields comparable to those in experiment, giving rise to edge conduction with $G \sim 2e^2/h$ while the bulk gap remains almost unchanged. We also study the transition into the ordered state at finite temperature and field. We determine the scaling of critical temperatures as a function of magnetic field, $B$, and distance to the zero field critical point and find sublinear scaling with magnetic field for weak and intermediate strength interactions, and $\sqrt{B}$ scaling at the coupling associated with the zero field quantum critical point. We also predict that critical temperatures for $ν= 0$ states should be an order of magnitude higher than those for $|ν| = 1$ states, consistent with the fact that the low temperature gap for $ν= 0$ is roughly an order of magnitude larger than that for $|ν| = 1$.