论文标题

在可数基本的免费组上

On countable elementary free groups

论文作者

Kharlampovich, Olga, Natoli, Christopher

论文摘要

我们证明,如果一个可计数的组基本等同于非亚洲自由组,并且其所有阿伯利亚亚组都是循环的,那么该组是一组常规NTQ组链的结合(即双曲线塔)。

We prove that if a countable group is elementarily equivalent to a non-abelian free group and all of its abelian subgroups are cyclic, then the group is a union of a chain of regular NTQ groups (i.e., hyperbolic towers).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源