论文标题

Hausdorff的量度和Assouad尺寸在生产线上的通用自称为IF

Hausdorff measure and Assouad dimension of generic self-conformal IFS on the line

论文作者

Bárány, Balázs, Kolossváry, István, Rams, Michał, Simon, Károly

论文摘要

本文考虑了第一级圆柱体重叠的真实线上的自符号迭代函数系统(IFSS)。在自我符合条件的IFSS的空间中,我们表明,如果这种系统的吸引子的Hausdorff尺寸小于$ 1 $,则一般(从拓扑意义上)表明,它具有零适当的尺寸Hausdorff量,其补充尺寸等于$ 1 $。我们的主要贡献是表明,如果圆柱体相交,那么IFS通常不满足弱的分离特性,因此我们可以应用Angelevska,Käenmäki和Troscheit的最新结果[BLMS,2020年]。这种现象适用于横向家庭(尤其是翻译家庭),在自相​​似的情况下,在拓扑和衡量理论意义上,以及在拓扑含义上更一般的自符符号情况下。

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than $1$ then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to $1$. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit [BLMS, 2020]. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源