论文标题
有效场理论中的艾科纳尔相基质,挠度角和时间延迟
Eikonal phase matrix, deflection angle and time delay in effective field theories of gravity
论文作者
论文摘要
Eikonal近似是在量幅度幅度直接从量规理论中提取经典可观察物的理想工具。在这里,我们考虑了有效的重力理论,除了Einstein-Hilbert术语外,我们还包括$ r^3 $,$ r^4 $和$ ffr $的非最小耦合。特别是,我们研究了重量$ω$ off的重力和光子的散射,重量$ m $在极限$ m \ gg gg gg gg | \ gg | \ vec {q} \,| $中,其中$ \ \ vec {q} $是动量转移。非最小耦合的存在诱导了在艾科尼尔极限中幸存下来的螺旋叉过程,从而促进了Eikonal相位到Eikonal阶段基质。我们从相关的两到二螺旋振幅中获取后者,我们计算为一环订单,并确认$ω$ oppontions的前阶项是阿马蒂,ciafaloni和veneziano。从艾科纳尔相矩阵的特征值中,我们提取两个物理可观察物,至下午2点:经典偏转角度和夏皮罗时间延迟/进步。每当违反无质量散射粒子的螺旋性保护的经典期望,即艾科纳尔矩阵的特征值是非定位的,由于时间的推移,因果关系违反了因果关系。我们表明,对于$ r^4 $和$ ffr $理论中的重力散射,如果这些相互作用的耦合满足某些阳性条件,那么时间就会提高时间,而对于$ r^3 $理论中的重力散射和$ FFR $理论中的光子散射是不可避免的。我们考虑的散射过程模仿光子和引力偏离无旋转重物(例如黑色孔)的偏转。
The eikonal approximation is an ideal tool to extract classical observables in gauge theory and gravity directly from scattering amplitudes. Here we consider effective theories of gravity where in addition to the Einstein-Hilbert term we include non-minimal couplings of the type $R^3$, $R^4$ and $FFR$. In particular, we study the scattering of gravitons and photons of frequency $ω$ off heavy scalars of mass $m$ in the limit $m\gg ω\gg |\vec{q}\,|$, where $\vec{q}$ is the momentum transfer. The presence of non-minimal couplings induces helicity-flip processes which survive the eikonal limit, thereby promoting the eikonal phase to an eikonal phase matrix. We obtain the latter from the relevant two-to-two helicity amplitudes that we compute up to one-loop order, and confirm that the leading-order terms in $ω$ exponentiate à la Amati, Ciafaloni and Veneziano. From the eigenvalues of the eikonal phase matrix we then extract two physical observables, to 2PM order: the classical deflection angle and Shapiro time delay/advance. Whenever the classical expectation of helicity conservation of the massless scattered particle is violated, i.e. the eigenvalues of the eikonal matrix are non-degenerate, causality violation due to time advance is a generic possibility for small impact parameter. We show that for graviton scattering in the $R^4$ and $FFR$ theories, time advance is circumvented if the couplings of these interactions satisfy certain positivity conditions, while it is unavoidable for graviton scattering in the $R^3$ theory and photon scattering in the $FFR$ theory. The scattering processes we consider mimic the deflection of photons and gravitons off spinless heavy objects such as black~holes.