论文标题

Schrodinger几何形状的经典字符串解决方案中的有限尺寸效应

Finite size effects in classical string solutions of the Schrodinger geometry

论文作者

Zoakos, Dimitrios

论文摘要

我们研究了Schrodinger时空的半经典弦溶液的有限尺寸校正。我们将领先的指数校正计算到单个旋转巨头和单个旋转单峰溶液的无限尺寸分散关系。该解决方案生活在五个球的$ s^3 $子空间中,范围且范围是公制的Schrodinger部分。在零变形的极限中,有限尺寸的分散关系流动到未构造的$ ads_5 \ times s^5 $对应物,而在无限尺寸中,校正项消失了,已知的无限大小分散关系。

We study finite size corrections to the semiclassical string solutions of the Schrodinger spacetime. We compute the leading order exponential corrections to the infinite size dispersion relation of the single spin giant magnon and of the single spin single spike solutions. The solutions live in a $S^3$ subspace of the five-sphere and extent in the Schrodinger part of the metric. In the limit of zero deformation the finite size dispersion relations flow to the undeformed $AdS_5 \times S^5$ counterparts and in the infinite size limit the correction term vanishes and the known infinite size dispersion relations are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源