论文标题
哈伯德模型的2d-3d交叉中的热力学和磁性
Thermodynamics and magnetism in the 2D-3D crossover of the Hubbard model
论文作者
论文摘要
在光学晶格上超速效运原子中抗铁磁(AF)相关性的实现是一个重要的成就。实验是在一个,两个和三个维度上进行的,并且还研究了各向异性构型,并在某些晶格方向上进行了更强的隧穿。这种各向异性与铜酸盐超导体的物理和其他强相关的材料有关。此外,这种各向异性可能会得到利用以增强自动锻炼顺序。在这里,我们使用行列式量子蒙特卡洛(Monte Carlo)进行数值研究,这是3D哈伯德模型中各向异性的简单实现,其中平面之间的隧道($ t_ \ perp $)与$ t $ t $的隧道隧道不平等。该模型在三维各向同性($ t_ \ perp = t $)和二维($ t_ \ perp = 0 $)系统之间进行了插值。我们表明,在固定的相互作用强度与隧道率($ u/t $)时,各向异性可以增强相对于2D和3D结果的磁性结构因子。但是,这种增强性发生在相互作用强度以下,低于néel温度$ t _ {\ rm n \急性{e} el} $,以至于无法使结构因子无法超过其在最佳$ u/t $的各向同性3D系统中的结构因子。我们以磁性结构因子,真实空间自旋相关性,双重占用位点的数量和热力学可观察物的形式来表征2d-3d跨界。我们结果的一个有趣的含义源于熵对各向异性的依赖。随着系统从3D发展到2D,固定温度下的熵增加。相应地,在固定熵下,温度将从3D降低到2D。这表明了一种冷却方案,其中维度从3D变为2D。
The realization of antiferromagnetic (AF) correlations in ultracold fermionic atoms on an optical lattice is a significant achievement. Experiments have been carried out in one, two, and three dimensions, and have also studied anisotropic configurations with stronger tunneling in some lattice directions. Such anisotropy is relevant to the physics of cuprate superconductors and other strongly correlated materials. Moreover, this anisotropy might be harnessed to enhance AF order. Here we numerically investigate, using Determinant Quantum Monte Carlo, a simple realization of anisotropy in the 3D Hubbard model in which the tunneling between planes, $t_\perp$, is unequal to the intraplane tunneling $t$. This model interpolates between the three-dimensional isotropic ($t_\perp = t$) and two-dimensional ($t_\perp =0$) systems. We show that at fixed interaction strength to tunneling ratio ($U/t$), anisotropy can enhance the magnetic structure factor relative to both 2D and 3D results. However, this enhancement occurs at interaction strengths below those for which the Néel temperature $T_{\rm N\acute{e}el}$ is largest, in such a way that the structure factor cannot be made to exceed its value in isotropic 3D systems at the optimal $U/t$. We characterize the 2D-3D crossover in terms of the magnetic structure factor, real space spin correlations, number of doubly-occupied sites, and thermodynamic observables. An interesting implication of our results stems from the entropy's dependence on anisotropy. As the system evolves from 3D to 2D, the entropy at a fixed temperature increases. Correspondingly, at fixed entropy, the temperature will decrease going from 3D to 2D. This suggests a cooling protocol in which the dimensionality is adiabatically changed from 3D to 2D.