论文标题
双尾量子临界
Bilocal quantum criticality
论文作者
论文摘要
我们考虑2+1维相规的理论,并耦合到其他自由度,这些理论在时间上诱导了空间局部但远程$ 1/(τ-τ-τ')^2 $相互作用,量规中性运营商之间的相互作用。这种理论被认为描述了最佳掺杂的孔掺杂层。我们专注于带有$ N_H $ the Higgs字段的SU(2)仪表理论,经历了希格斯和限制阶段之间的量子过渡:$ 1/(τ-τ-τ')^2 $相互作用来自观众的大型电子表面。大型$ n_h $扩展会导致一个有效的动作,其中包含时间,但在太空中是本地的。我们在订单$ 1/n_h $上找到一个强键耦合的固定点,并具有动态关键指数$ z> 1 $。我们表明,熵可以保留高度尺度,但仍导致温度特异性热量的线性,其同时效率在量子临界点附近具有有限的增强。
We consider 2+1 dimensional conformal gauge theories coupled to additional degrees of freedom which induce a spatially local but long-range in time $1/(τ-τ')^2$ interaction between gauge-neutral local operators. Such theories have been argued to describe the hole-doped cuprates near optimal doping. We focus on a SU(2) gauge theory with $N_h$ flavors of adjoint Higgs fields undergoing a quantum transition between Higgs and confining phases: the $1/(τ-τ')^2$ interaction arises from a spectator large Fermi surface of electrons. The large $N_h$ expansion leads to an effective action containing fields which are bilocal in time but local in space. We find a strongly-coupled fixed point at order $1/N_h$, with dynamic critical exponent $z > 1$. We show that the entropy preserves hyperscaling, but nevertheless leads to a linear in temperature specific heat with a co-efficient which has a finite enhancement near the quantum critical point.