论文标题
Shapley价值作为结构化网络修剪的原理度量
Shapley Value as Principled Metric for Structured Network Pruning
论文作者
论文摘要
结构化修剪是降低神经网络的存储大小和推理成本的众所周知的技术。通常的修剪管道包括对网络内部过滤器进行对网络性能的贡献进行排名,并以最低的贡献去除单元,并对网络进行微调以减少修剪造成的伤害。最近的结果表明,如果有足够的微调资源,随机修剪与其他指标相当。在这项工作中,我们表明,当微调是不可能的,或者不有效的情况下,这在低数据制度上是不正确的。在这种情况下,减少修剪造成的伤害对于保留网络的性能至关重要。首先,我们分析了通过合作游戏理论建议的工具估算隐藏单元贡献的问题,并提出Shapley值作为此任务的原则排名指标。我们将文献中提出的几种替代方案进行比较,并讨论了莎普利价值在理论上如何优选。最后,我们将所有排名指标在低数据修剪的挑战性场景上进行比较,在那里我们演示了莎普利重视的表现如何胜过其他启发式方法。
Structured pruning is a well-known technique to reduce the storage size and inference cost of neural networks. The usual pruning pipeline consists of ranking the network internal filters and activations with respect to their contributions to the network performance, removing the units with the lowest contribution, and fine-tuning the network to reduce the harm induced by pruning. Recent results showed that random pruning performs on par with other metrics, given enough fine-tuning resources. In this work, we show that this is not true on a low-data regime when fine-tuning is either not possible or not effective. In this case, reducing the harm caused by pruning becomes crucial to retain the performance of the network. First, we analyze the problem of estimating the contribution of hidden units with tools suggested by cooperative game theory and propose Shapley values as a principled ranking metric for this task. We compare with several alternatives proposed in the literature and discuss how Shapley values are theoretically preferable. Finally, we compare all ranking metrics on the challenging scenario of low-data pruning, where we demonstrate how Shapley values outperform other heuristics.