论文标题

动态缩放在猝灭无序的经典$ n $ - 矢量模型中

Dynamic scaling in the quenched disordered classical $N$-vector model

论文作者

Mukherjee, Sudip, Basu, Abhik

论文摘要

我们重新审视短距离随机淬火障碍对具有立方各向异性的经典$ n $ vector模型的通用缩放特性的影响。我们设置了模型的未保守的松弛动力学,并研究了二阶相变附近的通用动态缩放。我们在使用短距离各向同性疾病的单环动态重量化组计算中提取临界指数和动态指数。我们表明,当猝灭障碍相比,临界点附近的动力学通常要慢,而不是与纯模型是各向同性或立方各向异性的无关。我们证明了由于旋转不变性破坏猝灭障碍阶参数耦合的扰动而导致相关通用类别的令人惊讶的阈值不稳定,这表明动态缩放的分解。我们推测,这可能意味着模型中的一种新颖的一阶转变,这是由破坏对称性疾病引起的。

We revisit the effects of short-ranged random quenched disorder on the universal scaling properties of the classical $N$-vector model with cubic anisotropy. We set up the nonconserved relaxational dynamics of the model, and study the universal dynamic scaling near the second order phase transition. We extract the critical exponents and the dynamic exponent in a one-loop dynamic renormalisation group calculation with short-ranged isotropic disorder. We show that the dynamics near a critical point is generically slower when the quenched disorder is relevant than when it is not, independent of whether the pure model is isotropic or cubic anisotropic. We demonstrate the surprising thresholdless instability of the associated universality class due to perturbations from rotational invariance breaking quenched disorder-order parameter coupling, indicating breakdown of dynamic scaling. We speculate that this may imply a novel first order transition in the model, induced by a symmetry-breaking disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源