论文标题

没有二分爪的弦弦两分图的Weisfeiler-Lean尺寸

The Weisfeiler-Leman dimension of chordal bipartite graphs without bipartite claw

论文作者

Ponomarenko, Ilia, Ryabov, Grigory

论文摘要

如果$ x $是双方的,则据说$ x $是弦核两分,并且没有诱导的长度至少$ 6 $的诱导周期。事实证明,如果$ x $不包含两分爪作为诱发子图,那么$ x $的Weisfeiler-Lean尺寸最多为$ 3 $。证明基于相干配置理论。

A graph $X$ is said to be chordal bipartite if it is bipartite and contains no induced cycle of length at least $6$. It is proved that if $X$ does not contain bipartite claw as an induced subgraph, then the Weisfeiler-Leman dimension of $X$ is at most $3$. The proof is based on the theory of coherent configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源