论文标题
palatini $ f(r)$重力的自我修复系统复杂性因子的定义
Definition of Complexity Factor for Self-Gravitating Systems in Palatini $f(R)$ Gravity
论文作者
论文摘要
本文的目的是探索那些自我赋予的相对论领域的复杂性因子(CF),他们的演变在非动态上进行。我们采用\ cite {physrevd.97.044010}中提到的CF的定义,将其修改为静态的球形对称情况,在修改后的重力理论(Palatini $ f(r)$理论)的框架内。在这方面,我们考虑了径向依赖性各向异性物质含量以及球形几何形状,并确定了径向进化模式所涉及的复杂性因子。我们将探索该领域和众所周知的托尔曼 - 奥森海默 - 沃尔科夫方程。从riemann张量的正交分解引入结构标量后,我们将计算复杂性因子。通过考虑Gokhroo和Mehra首先考虑的ANSATZ提出了一个确切的分析模型。物质变量和$ f(r)$项的作用在结构形成中分析,以及它们通过复杂性因子的演变。
The aim of this paper is to explore the complexity factor (CF) for those self-gravitating relativistic spheres whose evolution proceeds non-dynamically. We are adopting the definition of CF mentioned in \cite{PhysRevD.97.044010}, modifying it to the static spherically symmetric case, within the framework of a modified gravity theory (the Palatini $f(R)$ theory). In this respect, we have considered radial dependent anisotropic matter content coupled with spherical geometry and determined the complexity factor involved in the patterns of radial evolution. We shall explore the field and a well-known Tolman-Oppenheimer-Volkoff equations. After introducing structure scalars from the orthogonal decomposition of the Riemann tensor, we shall calculate complexity factor. An exact analytical model is presented by considering firstly ansatz provided by Gokhroo and Mehra. The role of matter variables and $f(R)$ terms are analyzed in the structure formation as well as their evolution through a complexity factor.