论文标题

关于出生学涵盖特性和选择原则的进一步观察

Further observations on bornological covering properties and selection principles

论文作者

Chandra, Debraj, Das, Pratulananda, Das, Subhankar

论文摘要

本文是使用强大统一融合的想法(Beer and Levi,2009)对Bornology进行的(Chandra等,2020)在(Chandra等,2020)中完成的公开封面和相关选择原理的延续。在这里,我们探讨了进一步的分歧,介绍了与某些选择与某些类别的出生学掩盖相关的选择原理的特征$ \ mathfrak {b}^s $ -gerlits-nagy属性$ x $的属性,此处是在此处介绍的(Gerlits and Nagy,1982)。此外,在有限的功率中,产品bornology $ \ mathfrak {b}^n $,$ {\ mathfrak {\ mathfrak {b}^n}^n}^s $ -hurewicz属性以及$ {\ mathfrak {\ mathfrak {b}^n}^n}^s $ - gerlits-naglits-nagy bropertial propertials $ x^n $的特征$(c(x),τ^s_ \ mathfrak {b})$喜欢可数风扇的紧密度,可计数的强风扇紧绷以及reznichenko的属性。

This article is a continuation of the study of bornological open covers and related selection principles in metric spaces done in (Chandra et al. 2020) using the idea of strong uniform convergence (Beer and Levi, 2009) on bornology. Here we explore further ramifications, presenting characterizations of various selection principles related to certain classes of bornological covers using the Ramseyan partition relations, interactive results between the cardinalities of bornological bases and certain selection principles involving bornological covers, producing new observations on the $\mathfrak{B}^s$-Hurewicz property introduced in (Chandra et al. 2020) and several results on the $\mathfrak{B}^s$-Gerlits-Nagy property of $X$ which is introduced here following the seminal work of (Gerlits and Nagy, 1982). In addition, in the finite power $X^n$ with the product bornology $\mathfrak{B}^n$, the ${\mathfrak{B}^n}^s$-Hurewicz property as well as the ${\mathfrak{B}^n}^s$-Gerlits-Nagy property of $X^n$ are characterized in terms of properties of $(C(X),τ^s_\mathfrak{B})$ like countable fan tightness, countable strong fan tightness along with the Reznichenko's property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源