论文标题

量化多尺度问题的量张量FEM:两个维度和三个维度的扩散问题

Quantized tensor FEM for multiscale problems: diffusion problems in two and three dimensions

论文作者

Kazeev, V., Oseledets, I., Rakhuba, M., Schwab, Ch.

论文摘要

在多尺度限制方面,均质化将多尺度的问题转变为$ n+1 $渐近分离的显微镜在物理领域上构成$ d \ subset \ subset \ mathbb {r}^d $作为在尺寸$(n+1)d $ n $ n $ n $ n $ n $ so-call s so-call so-salpal of so-sopal so-cally var的产品域上构成的单尺度问题。此过程允许将$ n+1 $缩放在$ d $物理尺寸中转换为$(n+1)d $ dimensions的单尺度结构。我们在这里证明,原始的物理多尺度问题和相应的高维限制问题都可以通过最近开发的量化量量有限元元素(QTT-FEM)进行数值处理。 该方法基于在庞大但通用的“虚拟”(背景)离散空间中限制计算低维(称为张量等级)的嵌套子空间的序列。在计算过程中,这些子空间在运行时进行了迭代和数据的计算,绕过任何“离线预先符合”。出于理论分析的目的,通过分析构建此类低维子空间以限制张量排名与错误$τ> 0 $。 我们在几个物理维度中考虑了模型线性椭圆多尺度问题,并在理论上和实验上都表明(i)(i)相关的高维度一个尺度问题的解决方案以及(ii)(ii)QTT-FEM有效近似的多尺度问题解决方案的相应近似。因此,这些问题可以通过标准(低阶)PDE离散化与张量结构线性系统的最先进的通用求解器结合使用标准(低阶)PDE离散化来以数值方式解决这些问题。我们证明了比例 - 稳定指数融合,即,QTT-FEM可以在$ \ logτ$中以多项式缩放的有效自由度缩放的有效自由度缩放,从而实现了准确性$τ$。

Homogenization in terms of multiscale limits transforms a multiscale problem with $n+1$ asymptotically separated microscales posed on a physical domain $D \subset \mathbb{R}^d$ into a one-scale problem posed on a product domain of dimension $(n+1)d$ by introducing $n$ so-called "fast variables". This procedure allows to convert $n+1$ scales in $d$ physical dimensions into a single-scale structure in $(n+1)d$ dimensions. We prove here that both the original, physical multiscale problem and the corresponding high-dimensional, one-scale limiting problem can be efficiently treated numerically with the recently developed quantized tensor-train finite-element method (QTT-FEM). The method is based on restricting computation to sequences of nested subspaces of low dimensions (which are called tensor ranks) within a vast but generic "virtual" (background) discretization space. In the course of computation, these subspaces are computed iteratively and data-adaptively at runtime, bypassing any "offline precomputation". For the purpose of theoretical analysis, such low-dimensional subspaces are constructed analytically to bound the tensor ranks vs. error $τ>0$. We consider a model linear elliptic multiscale problem in several physical dimensions and show, theoretically and experimentally, that both (i) the solution of the associated high-dimensional one-scale problem and (ii) the corresponding approximation to the solution of the multiscale problem admit efficient approximation by the QTT-FEM. These problems can therefore be numerically solved in a scale-robust fashion by standard (low-order) PDE discretizations combined with state-of-the-art general-purpose solvers for tensor-structured linear systems. We prove scale-robust exponential convergence, i.e., that QTT-FEM achieves accuracy $τ$ with the number of effective degrees of freedom scaling polynomially in $\log τ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源