论文标题
根据需要重新捕获
Recapture as You Want
论文作者
论文摘要
随着移动设备的越来越多的流行和更强大的相机系统,人们可以方便地拍摄日常生活的照片,这自然会带来对更智能的照片后处理技术的需求,尤其是在这些肖像照片上。在本文中,我们提出了一种肖像重新捕获方法,使用户可以轻松地编辑其肖像,以使所需的姿势/视图,身体身材和服装风格非常具有挑战性,因为它需要同时执行人体,不可见的身体零件推理和语义意识的编辑的非刚性变形。我们将编辑过程分解为语义感知的几何和外观变换。在几何变换中,生成了一个语义布局图,该图表满足用户的需求,以表示零件级的空间约束并进一步指导语义感知的外观转换。在外观转化中,我们设计了两个新型模块,分别是语义感知的专注转移(SAT)和布局图推理(LGR),分别进行了部分内部转移和零件间推理。 SAT模块通过注意源肖像中语义一致的区域来产生每个人类部分。它有效地解决了非刚性变形问题,并通过丰富的纹理细节很好地保留了内在的结构/外观。 LGR模块利用身体骨架知识来构建一个连接所有相关零件特征的布局图,其中图形推理机制用于在部分节点之间传播信息以挖掘其关系。通过这种方式,LGR模块会渗透不可见的身体部位,并确保所有部位之间的全球连贯性。关于DeepFashion,Market-1501和野外照片的广泛实验证明了我们方法的有效性和优势。视频演示为:\ url {https://youtu.be/vtyq9hl6jgw}。
With the increasing prevalence and more powerful camera systems of mobile devices, people can conveniently take photos in their daily life, which naturally brings the demand for more intelligent photo post-processing techniques, especially on those portrait photos. In this paper, we present a portrait recapture method enabling users to easily edit their portrait to desired posture/view, body figure and clothing style, which are very challenging to achieve since it requires to simultaneously perform non-rigid deformation of human body, invisible body-parts reasoning and semantic-aware editing. We decompose the editing procedure into semantic-aware geometric and appearance transformation. In geometric transformation, a semantic layout map is generated that meets user demands to represent part-level spatial constraints and further guides the semantic-aware appearance transformation. In appearance transformation, we design two novel modules, Semantic-aware Attentive Transfer (SAT) and Layout Graph Reasoning (LGR), to conduct intra-part transfer and inter-part reasoning, respectively. SAT module produces each human part by paying attention to the semantically consistent regions in the source portrait. It effectively addresses the non-rigid deformation issue and well preserves the intrinsic structure/appearance with rich texture details. LGR module utilizes body skeleton knowledge to construct a layout graph that connects all relevant part features, where graph reasoning mechanism is used to propagate information among part nodes to mine their relations. In this way, LGR module infers invisible body parts and guarantees global coherence among all the parts. Extensive experiments on DeepFashion, Market-1501 and in-the-wild photos demonstrate the effectiveness and superiority of our approach. Video demo is at: \url{https://youtu.be/vTyq9HL6jgw}.