论文标题
关于Fano歧管的变形
On Deformations of Fano Manifolds
论文作者
论文摘要
在本文中,我们为Kähler-Einstein指标的存在提供了新的必要条件,这些指标在FanoKähler-Einstein歧管的小变形上提供了新的条件。我们还表明,可以通过直接图像捆绑包上的规范$ l^2 $指标来近似Weil-Petersson指标。此外,我们描述了谐波图的能量功能在kuranishi空间上的次数功能,即紧凑型Kähler-Einstein歧管的变形。
In this paper we provide new necessary and sufficient conditions for the existence of Kähler-Einstein metrics on small deformations of a Fano Kähler-Einstein manifold. We also show that the Weil-Petersson metric can be approximated by the Ricci curvatures of the canonical $L^2$ metrics on the direct image bundles. In addition, we describe the plurisubharmonicity of the energy functional of harmonic maps on the Kuranishi space of the deformation of compact Kähler-Einstein manifolds of general type.