论文标题

关于Fano歧管的变形

On Deformations of Fano Manifolds

论文作者

Cao, Huai-Dong, Sun, Xiaofeng, Yau, Shing-Tung, Zhang, Yingying

论文摘要

在本文中,我们为Kähler-Einstein指标的存在提供了新的必要条件,这些指标在FanoKähler-Einstein歧管的小变形上提供了新的条件。我们还表明,可以通过直接图像捆绑包上的规范$ l^2 $指标来近似Weil-Petersson指标。此外,我们描述了谐波图的能量功能在kuranishi空间上的次数功能,即紧凑型Kähler-Einstein歧管的变形。

In this paper we provide new necessary and sufficient conditions for the existence of Kähler-Einstein metrics on small deformations of a Fano Kähler-Einstein manifold. We also show that the Weil-Petersson metric can be approximated by the Ricci curvatures of the canonical $L^2$ metrics on the direct image bundles. In addition, we describe the plurisubharmonicity of the energy functional of harmonic maps on the Kuranishi space of the deformation of compact Kähler-Einstein manifolds of general type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源