论文标题

尖锐的$ l^p $估算值的振荡整体操作员任意签名

Sharp $L^p$ estimates for oscillatory integral operators of arbitrary signature

论文作者

Hickman, Jonathan, Iliopoulou, Marina

论文摘要

Hörmander-type振荡的振荡性积分运算符的$ l^p $估计量在该阶段的一般签名假设下建立在所有维度上。这同时概括了作者和古斯(Guth)的早期作品,这些作者和古斯(Guth)处理了最大的签名案例,以及斯坦因(Stein)和布尔加因(Bourgain)的作品(guth),这是对待最小的签名案例。

The sharp range of $L^p$-estimates for the class of Hörmander-type oscillatory integral operators is established in all dimensions under a general signature assumption on the phase. This simultaneously generalises earlier work of the authors and Guth, which treats the maximal signature case, and also work of Stein and Bourgain--Guth, which treats the minimal signature case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源