论文标题

图形展开网络:用于图形信号的可解释的神经网络

Graph Unrolling Networks: Interpretable Neural Networks for Graph Signal Denoising

论文作者

Chen, Siheng, Eldar, Yonina C., Zhao, Lingxiao

论文摘要

我们提出了一个可解释的图形神经网络框架,以降低单个或多个嘈杂的图形信号。提出的图形展开网络将算法展开向图域展开,并从信号处理的角度提供架构设计的解释。我们通过将每次迭代映射到一个网络层中来展开迭代授权算法,在该网络层中,馈送前进过程等同于迭代的denoing图形信号。我们通过无监督的学习来训练图形展开网络,其中使用输入噪声信号来监督网络。通过利用神经网络的学习能力,我们可以从输入噪声信号中自适应地捕获适当的先验,而不是手动选择信号先验。图形展开网络的核心组件是边缘分享图卷积操作,该操作通过可训练的内核函数参数为每个边缘的重量,其中所有边缘共享可训练的参数。所提出的卷积是置换式的,可以灵活地将边缘重量调整为各种图形信号。然后,我们通过分别展开稀疏编码和趋势过滤,考虑这类网络的两个特殊情况,即图形展开稀疏编码(GUSC)和图形展开趋势过滤(GUTF)。为了验证所提出的方法,我们在现实世界数据集和模拟数据集上进行了广泛的实验,并证明我们的方法比常规的denoo算法和最先进的图形神经网络具有较小的变质错误。为了降低单个平滑的图形信号,所提出的网络的归一化均方根误差分别比图形拉普拉斯·德诺和图形小波的均值低约40%和60%。

We propose an interpretable graph neural network framework to denoise single or multiple noisy graph signals. The proposed graph unrolling networks expand algorithm unrolling to the graph domain and provide an interpretation of the architecture design from a signal processing perspective. We unroll an iterative denoising algorithm by mapping each iteration into a single network layer where the feed-forward process is equivalent to iteratively denoising graph signals. We train the graph unrolling networks through unsupervised learning, where the input noisy graph signals are used to supervise the networks. By leveraging the learning ability of neural networks, we adaptively capture appropriate priors from input noisy graph signals, instead of manually choosing signal priors. A core component of graph unrolling networks is the edge-weight-sharing graph convolution operation, which parameterizes each edge weight by a trainable kernel function where the trainable parameters are shared by all the edges. The proposed convolution is permutation-equivariant and can flexibly adjust the edge weights to various graph signals. We then consider two special cases of this class of networks, graph unrolling sparse coding (GUSC) and graph unrolling trend filtering (GUTF), by unrolling sparse coding and trend filtering, respectively. To validate the proposed methods, we conduct extensive experiments on both real-world datasets and simulated datasets, and demonstrate that our methods have smaller denoising errors than conventional denoising algorithms and state-of-the-art graph neural networks. For denoising a single smooth graph signal, the normalized mean square error of the proposed networks is around 40% and 60% lower than that of graph Laplacian denoising and graph wavelets, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源