论文标题
从集合到多集:概率整数下模型的可证明的变异推断
From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models
论文作者
论文摘要
在机器学习和数据挖掘中已经广泛研究了集量功能。特别是,在整数晶格(整数下函数)上优化了次模块功能,最近引起了很多兴趣,因为该领域与许多实际问题设置自然相关,例如削减多标签图,预算分配,预算分配和收入最大化与离散分配。相比之下,到目前为止,这些功能用于概率建模的关注很少。在这项工作中,我们首先提出了广义的多线性扩展,这是整数下函数的连续DR-submodular扩展。我们研究了该扩展的中心特性,并制定了一种通过整数下函数定义的新概率模型。然后,我们引入了一个区块坐标上升算法,以对这些类别的模型执行近似推断。最后,我们证明了其在具有整数superodular目标的几个现实世界社交连接数据集上的有效性和生存能力。
Submodular functions have been studied extensively in machine learning and data mining. In particular, the optimization of submodular functions over the integer lattice (integer submodular functions) has recently attracted much interest, because this domain relates naturally to many practical problem settings, such as multilabel graph cut, budget allocation and revenue maximization with discrete assignments. In contrast, the use of these functions for probabilistic modeling has received surprisingly little attention so far. In this work, we firstly propose the Generalized Multilinear Extension, a continuous DR-submodular extension for integer submodular functions. We study central properties of this extension and formulate a new probabilistic model which is defined through integer submodular functions. Then, we introduce a block-coordinate ascent algorithm to perform approximate inference for those class of models. Finally, we demonstrate its effectiveness and viability on several real-world social connection graph datasets with integer submodular objectives.