论文标题

Lie-rinehart和Hochschild的共同学,用于差分运营商的代数

Lie-Rinehart and Hochschild cohomology for algebras of differential operators

论文作者

Kordon, Francisco, Lambre, Thierry

论文摘要

令$(s,l)$为lie-rinehart代数,这样$ l $是$ s $ projective,让$ u $成为其通用的包围代数。在本文中,我们提出了一个频谱序列,该频谱序列将$ u $的Hochschild共同体收敛,并在$ U $ -Bimodule $ m $上获得值,其第二页涉及代数的Lie-Rinehart共同体,以及Hochschild of $ s $的Hochschild Coomomology in $ m $ $ m $。在对所涉及的代数结构进行了方便的描述后,我们使用光谱序列来明确计算差分运算符代数的Hochschild共同体,切成三条线的中央布置。

Let $(S,L)$ be a Lie-Rinehart algebra such that $L$ is $S$-projective and let $U$ be its universal enveloping algebra. In this paper we present a spectral sequence which converges to the Hochschild cohomology of $U$ with values on a $U$-bimodule $M$ and whose second page involves the Lie-Rinehart cohomology of the algebra and the Hochschild cohomology of $S$ with values on $M$. After giving a convenient description of the involved algebraic structures we use the spectral sequence to compute explicitly the Hochschild cohomology of the algebra of differential operators tangent to a central arrangement of three lines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源