论文标题

强化学习和贝叶斯数据同化肿瘤学中的精确剂量

Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology

论文作者

Maier, Corinna, Hartung, Niklas, Kloft, Charlotte, Huisinga, Wilhelm, de Wiljes, Jana

论文摘要

使用治疗药物/生物标志物监测的模型信息精确剂量(MIPD)为显着提高药物疗法的功效和安全性提供了机会。当前的策略包括模型信息表,或基于最大的A-tosterii估计值。但是,这些方法缺乏对不确定性的量化和/或仅考虑一部分可用的患者特定信息。我们提出了三种使用贝叶斯数据同化(DA)和/或增强学习(RL)的新方法,以控制中性粒细胞减少症,这是抗癌化学疗法中的主要剂量限制副作用。与现有方法相比,这些方法有可能大大降低威胁生命的4级和亚治性级中性粒细胞减少症的发生率。我们进一步表明,RL可以通过确定驱动剂量决策的患者因素来获得进一步的见解。由于其灵活性,可以轻松扩展提出的组合DA-RL方法以整合多个终点或患者报告的结果,从而有望为未来的个性化疗法带来重要的好处。

Model-informed precision dosing (MIPD) using therapeutic drug/biomarker monitoring offers the opportunity to significantly improve the efficacy and safety of drug therapies. Current strategies comprise model-informed dosing tables or are based on maximum a-posteriori estimates. These approaches, however, lack a quantification of uncertainty and/or consider only part of the available patient-specific information. We propose three novel approaches for MIPD employing Bayesian data assimilation (DA) and/or reinforcement learning (RL) to control neutropenia, the major dose-limiting side effect in anticancer chemotherapy. These approaches have the potential to substantially reduce the incidence of life-threatening grade 4 and subtherapeutic grade 0 neutropenia compared to existing approaches. We further show that RL allows to gain further insights by identifying patient factors that drive dose decisions. Due to its flexibility, the proposed combined DA-RL approach can easily be extended to integrate multiple endpoints or patient-reported outcomes, thereby promising important benefits for future personalized therapies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源