论文标题

多变量时间序列特征提取的广义签名方法提取

A Generalised Signature Method for Multivariate Time Series Feature Extraction

论文作者

Morrill, James, Fermanian, Adeline, Kidger, Patrick, Lyons, Terry

论文摘要

“签名方法”是指源自受控微分方程理论的多元时间序列的特征提取技术集合。对于如何应用此方法具有很大的灵活性。一方面,这种灵活性允许对特定问题定制该方法,但另一方面,可以使精确的应用程序具有挑战性。本文做出了两个贡献。首先,签名方法的变化统一为一般方法,即\ emph {广义签名方法},其中以前的变化是特殊情况。这个统一框架的主要目的是使任何机器学习从业人员更容易获得签名方法,而现在它主要由专家使用。其次,在此框架内,我们得出了提供域 - 不平衡起点的选择的规范集合。由于对26个数据集进行了广泛的实证研究,我们得出了这些选择,并继续对当前基准进行多变量时间序列分类的竞争性能。最后,为了简化实际应用,我们将我们的技术作为开源[删除]项目的一部分提供。

The 'signature method' refers to a collection of feature extraction techniques for multivariate time series, derived from the theory of controlled differential equations. There is a great deal of flexibility as to how this method can be applied. On the one hand, this flexibility allows the method to be tailored to specific problems, but on the other hand, can make precise application challenging. This paper makes two contributions. First, the variations on the signature method are unified into a general approach, the \emph{generalised signature method}, of which previous variations are special cases. A primary aim of this unifying framework is to make the signature method more accessible to any machine learning practitioner, whereas it is now mostly used by specialists. Second, and within this framework, we derive a canonical collection of choices that provide a domain-agnostic starting point. We derive these choices as a result of an extensive empirical study on 26 datasets and go on to show competitive performance against current benchmarks for multivariate time series classification. Finally, to ease practical application, we make our techniques available as part of the open-source [redacted] project.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源