论文标题
通过遍布影响逃脱和积聚:高速弹出的缩放关系的配方
Escape and accretion by cratering impacts: Formulation of scaling relations for high-speed ejecta
论文作者
论文摘要
许多小物体不可避免地会导致行星形成和进化过程中对大行星体的裂缝影响。由于这些很小的冲击,目标材料的一部分从大物体的重力中逸出,而撞击物材料的一部分会取决于目标表面,具体取决于冲击速度和角度。在这里,我们研究了高速喷射的质量,该弹射体通过忽略材料强度时会产生碎屑影响来逃脱目标重力。我们使用平滑的颗粒流体动力学方法对平面岩石靶标进行了大量的碎屑冲击模拟。我们表明,从我们的数值模拟中获得的目标材料的逃生量与在点源假设下的标准定律的预测一致,当$ v _ {\ rm imp} \ gtrsim 12 v _ {\ rm esc} $,其中$ v _ {\ rm imp} $是$ v v v v _ pake veLocity and $ v v _目标。但是,我们发现点源缩放定律高估了逃生质量的质量,高达$ \ sim 70 $,具体取决于冲击角度时,当$ v _ {\ rm imp} \ simp} \ lysesim 12 v _ {\ rm esc} $时。使用从数值模拟获得的数据,我们为$ v _ {\ rm imp} \ Lessim 12 v _ {\ rm esc} $的目标材料的逃生质量得出了新的缩放定律。我们还得出了一种缩放定律,该定律定律通过数值评估撞击物材料的逃生质量来预测撞击物材料的积聚质量。我们新得出的缩放定律可用于预测目标材料的逃生质量和影响物材料的积聚质量,以实现在行星形成过程中大型行星体发生的各种碎石撞击。
Numerous small bodies inevitably lead to cratering impacts on large planetary bodies during planet formation and evolution. As a consequence of these small impacts, a fraction of the target material escapes from the gravity of the large body, and a fraction of the impactor material accretes onto the target surface, depending on the impact velocities and angles. Here, we study the mass of the high-speed ejecta that escapes from the target gravity by cratering impacts when material strength is neglected. We perform a large number of cratering impact simulations onto a planar rocky target using the smoothed particle hydrodynamics method. We show that the escape mass of the target material obtained from our numerical simulations agrees with the prediction of a scaling law under a point-source assumption when $v_{\rm imp} \gtrsim 12 v_{\rm esc}$, where $v_{\rm imp}$ is the impact velocity and $v_{\rm esc}$ is the escape velocity of the target. However, we find that the point-source scaling law overestimates the escape mass up to a factor of $\sim 70$, depending on the impact angle, when $v_{\rm imp} \lesssim 12 v_{\rm esc}$. Using data obtained from numerical simulations, we derive a new scaling law for the escape mass of the target material for $v_{\rm imp} \lesssim 12 v_{\rm esc}$. We also derive a scaling law that predicts the accretion mass of the impactor material onto the target surface upon cratering impacts by numerically evaluating the escape mass of the impactor material. Our newly derived scaling laws are useful for predicting the escape mass of the target material and the accretion mass of the impactor material for a variety of cratering impacts that would occur on large planetary bodies during planet formation.