论文标题
来自模块化定律的色度对称函数
Chromatic symmetric functions from the modular law
论文作者
论文摘要
在本文中,我们展示了如何计算Guay-Paquet引入的模块化定律的冷漠图的色素准对称功能。我们提供了一种算法,可用于满足该法律的任何功能,例如单细胞LLT多项式。当冷漠图具有二分的补充时,它将减少到平面网络中,在这种情况下,我们证明了在基本基础上的色度准对称函数的系数是正值的单峰多项式,并将其表征为某些$ q $ - hit数字(最多)。最后,我们讨论了色度对称函数的系数的对数凹度。
In this article we show how to compute the chromatic quasisymmetric function of indifference graphs from the modular law introduced by Guay-Paquet. We provide an algorithm which works for any function that satisfies this law, such as unicellular LLT polynomials. When the indifference graph has bipartite complement it reduces to a planar network, in this case, we prove that the coefficients of the chromatic quasisymmetric function in the elementary basis are positive unimodal polynomials and characterize them as certain $q$-hit numbers (up to a factor). Finally, we discuss the logarithmic concavity of the coefficients of the chromatic quasisymmetric function.