论文标题

由双曲系统控制的结晶模型的稳定化

Stabilization of Crystallization Models Governed by Hyperbolic Systems

论文作者

Zuyev, Alexander, Benner, Peter

论文摘要

本文介绍了由部分微分方程的双曲系统与普通和全差异方程式相连的连续结晶的数学模型。所考虑的系统接收具有恒定输入的非零稳态解决方案。为了稳定这些解决方案,我们提出了一种基于加权L2空间中二次形式的控制Lyapunov功能的方法。结果表明,所提出的控制设计方案保证了闭环系统的指数稳定性。

This paper deals with mathematical models of continuous crystallization described by hyperbolic systems of partial differential equations coupled with ordinary and integro-differential equations. The considered systems admit nonzero steady-state solutions with constant inputs. To stabilize these solutions, we present an approach for constructing control Lyapunov functionals based on quadratic forms in weighted L2-spaces. It is shown that the proposed control design scheme guarantees exponential stability of the closed-loop system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源