论文标题
有效的完全动态消除森林,可用于检测长路径和周期
Efficient fully dynamic elimination forests with applications to detecting long paths and cycles
论文作者
论文摘要
我们提出了一个数据结构,该数据结构最多最多$ d $,该数据结构在边缘插入和删除时会随着时间的流逝而修改,并保持了最佳的高度消除林。数据结构达到了最差的更新时间$ 2^{{\ cal o}(d^2)} $,它匹配静态fpt算法的运行时间中最著名的参数依赖关系,用于计算图形的超越。这改善了Dvo晚等。 [ESA 2014],对于某些非优质(即塔式指数)功能$ f $的同一问题,他就达到了同一问题的更新时间$ f(d)$。作为副产品,我们在$ d $ in $ d $ in $ d $ d $ d $ d^{{{\ cal o}(d)} $的最小障碍物尺寸上提高了已知上限。 作为应用程序,我们设计了新的完全动态的参数化数据结构,以检测一般图中的长路径和周期。更确切地说,对于固定参数$ k $和动态图$ g $,通过边缘插入和删除随时间修改的动态图$ g $,我们的数据结构保持了以下查询的答案: - $ g $是否包含$ k $顶点的简单路径? - $ g $至少在至少$ k $顶点上包含一个简单的周期? 在第一种情况下,数据结构达到了摊销更新时间$ 2^{{\ cal o}(k^2)} $。在第二种情况下,摊销的更新时间为$ 2^{{\ cal o}(k^4)} + {\ cal o}(k \ log n)$。在这两种情况下,我们都假设$ g $的边缘上的字典访问。
We present a data structure that in a dynamic graph of treedepth at most $d$, which is modified over time by edge insertions and deletions, maintains an optimum-height elimination forest. The data structure achieves worst-case update time $2^{{\cal O}(d^2)}$, which matches the best known parameter dependency in the running time of a static fpt algorithm for computing the treedepth of a graph. This improves a result of Dvořák et al. [ESA 2014], who for the same problem achieved update time $f(d)$ for some non-elementary (i.e. tower-exponential) function $f$. As a by-product, we improve known upper bounds on the sizes of minimal obstructions for having treedepth $d$ from doubly-exponential in $d$ to $d^{{\cal O}(d)}$. As applications, we design new fully dynamic parameterized data structures for detecting long paths and cycles in general graphs. More precisely, for a fixed parameter $k$ and a dynamic graph $G$, modified over time by edge insertions and deletions, our data structures maintain answers to the following queries: - Does $G$ contain a simple path on $k$ vertices? - Does $G$ contain a simple cycle on at least $k$ vertices? In the first case, the data structure achieves amortized update time $2^{{\cal O}(k^2)}$. In the second case, the amortized update time is $2^{{\cal O}(k^4)} + {\cal O}(k \log n)$. In both cases we assume access to a dictionary on the edges of $G$.