论文标题

贝贝(BESOV)的三维微极流体方程式的规律性标准

A regularity criterion for three-dimensional micropolar fluid equations in Besov spaces of negative regular indices

论文作者

Wu, Fan, Ragusa, Maria Alessandra

论文摘要

在本文中,我们根据速度的一个部分导数研究了3D微极流体方程的规则性标准。可以证明,如果\ begin {equination*} \ int^{t} _ {0} \ | \ | \ partial_ {3} \ text {with} \ quad 0 <r <1,\ end {equation*}然后,微极流体方程的解决方案实际上在$(0,t)$上平滑。这改善并扩大了许多先前的结果。

In this article, we study regularity criteria for the 3D micropolar fluid equations in terms of one partial derivative of the velocity. It is proved that if \begin{equation*} \int^{T}_{0}\|\partial_{3}u\|^{\frac{2}{1-r}}_{\dot{B}^{-r}_{\infty,\infty}} dt<\infty \quad \text{with} \quad 0< r<1, \end{equation*} then, the solutions of the micropolar fluid equations actually are smooth on $(0, T)$. This improves and extends many previous results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源