论文标题
在协作边缘学习中用于资源共享的激励机制设计
Incentive Mechanism Design for Resource Sharing in Collaborative Edge Learning
论文作者
论文摘要
在5G及以后的网络中,人工智能应用程序预计将越来越普遍。这需要从当前以云为中心的模型培训方法转变为基于边缘计算的协作学习方案的范式转变,称为边缘学习,在该方案中,在网络边缘执行模型培训。在本文中,我们首先介绍了协作边缘学习的原理和技术。然后,我们确定边缘学习的成功,可扩展的实现需要终端设备和边缘服务器的通信,缓存,计算和学习资源(3C-L),以有效地杠杆化。但是,用户可能不同意而没有获得足够的薪酬而贡献资源。考虑到边缘节点的异质性,例如,在可用的计算资源方面,我们讨论了激励机制设计的挑战,以促进资源共享用于边缘学习。此外,我们提出了一个案例研究,涉及最佳拍卖设计,使用深度学习来定价有助于边缘学习的新鲜数据。绩效评估显示了我们提出的拍卖对基准方案的收入最大化。
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous. This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning, in which model training is executed at the edge of the network. In this article, we first introduce the principles and technologies of collaborative edge learning. Then, we establish that a successful, scalable implementation of edge learning requires the communication, caching, computation, and learning resources (3C-L) of end devices and edge servers to be leveraged jointly in an efficient manner. However, users may not consent to contribute their resources without receiving adequate compensation. In consideration of the heterogeneity of edge nodes, e.g., in terms of available computation resources, we discuss the challenges of incentive mechanism design to facilitate resource sharing for edge learning. Furthermore, we present a case study involving optimal auction design using Deep Learning to price fresh data contributed for edge learning. The performance evaluation shows the revenue maximizing properties of our proposed auction over the benchmark schemes.