论文标题

有限偏括号,可解决的添加剂组

Finite skew braces with solvable additive group

论文作者

Gorshkov, Ilya, Nasybullov, Timur

论文摘要

A. smoktunowicz和L. vendramin猜想,如果$ a $是有限的偏斜支撑,可解决的添加剂组,那么$ a $的乘法组是可解决的。在此简短的说法中,我们朝着积极解决这个猜想迈出了一步,证明如果$ a $是最小的有限偏斜支撑,可解决的添加剂组和不可溶解的乘法组,那么$ a $的乘法组并不简单。在获得此结果的路上,我们证明了A. smoktunowicz和L. vendramin的猜想在$ a $ $ 3 $不可分解的情况下是正确的。

A. Smoktunowicz and L. Vendramin conjectured that if $A$ is a finite skew brace with solvable additive group, then the multiplicative group of $A$ is solvable. In this short note we make a step towards positive solution of this conjecture proving that if $A$ is a minimal finite skew brace with solvable additive group and non-solvable multiplicative group, then the multiplicative group of $A$ is not simple. On the way to obtaining this result, we prove that the conjecture of A. Smoktunowicz and L. Vendramin is correct in the case when the order of $A$ is not divisible by $3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源