论文标题

DANR:差异感知网络正则

DANR: Discrepancy-aware Network Regularization

论文作者

You, Hongyuan, Kocayusufoglu, Furkan, Singh, Ambuj K.

论文摘要

网络正则化是将结构性先验知识合并到网络上学习连贯模型的有效工具,并且在从空间经济学到神经影像学研究的应用中得出了准确的估计。最近,人们对将网络正则化扩展到时空情况的兴趣越来越大,以适应网络的演变。但是,在静态和时空情况下,缺失或损坏的边缘权重都会损害网络正则化发现所需解决方案的能力。为了解决这些差距,我们提出了一种新颖的方法--- {\ IT差异感知网络正则化}(danr)---这对于不足的正则化并有效地捕获了时空网络上的模型进化和结构变化。我们根据乘数的交替方向方法(ADMM)开发了分布式和可扩展的算法,以确保融合到全局最佳解决方案,以解决提出的问题。合成和现实世界网络的实验结果表明,我们的方法在各种任务上都提高了性能,并可以解释不断发展的网络中的模型变化。

Network regularization is an effective tool for incorporating structural prior knowledge to learn coherent models over networks, and has yielded provably accurate estimates in applications ranging from spatial economics to neuroimaging studies. Recently, there has been an increasing interest in extending network regularization to the spatio-temporal case to accommodate the evolution of networks. However, in both static and spatio-temporal cases, missing or corrupted edge weights can compromise the ability of network regularization to discover desired solutions. To address these gaps, we propose a novel approach---{\it discrepancy-aware network regularization} (DANR)---that is robust to inadequate regularizations and effectively captures model evolution and structural changes over spatio-temporal networks. We develop a distributed and scalable algorithm based on the alternating direction method of multipliers (ADMM) to solve the proposed problem with guaranteed convergence to global optimum solutions. Experimental results on both synthetic and real-world networks demonstrate that our approach achieves improved performance on various tasks, and enables interpretation of model changes in evolving networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源