论文标题
电力机电耦合的统计机械分析在电响应性聚合物链中
Statistical Mechanical Analysis of the Electromechanical Coupling in an Electrically-Responsive Polymer Chain
论文作者
论文摘要
将变形和静电的聚合物材料具有在软传感器和执行器中使用的潜力,其潜在应用包括机器人,生物医学,能源,航空航天和汽车技术。与数十年来使用统计力学方法研究的聚合物的力学相反,变形和电场下的耦合响应在很大程度上仅在连续量表上进行现象学进行了建模。在这项工作中,我们使用统计力学检查了电响应性聚合物链的耦合变形和电响应的物理。我们从一个简单的各向异性模型开始,用于静电偶极子对单个单体电场的响应,然后在静电场能和诱导的偶极场能量之间使用能量尺度分离,以减少非局部和无限量化统计平均的平均,以简单的局部局部二位分差异。在这种简化的设置中,我们使用最大项近似来得出最可能的单体方向密度的方程,并使用此近似来得出链自由能。这些方程进行数值研究,结果提供了对电力耦合弹性体链物理学的见解。相对于热能,封闭形式的近似值也以小电能的极限开发。在作用在链上的小机械拉伸力的极限;并在一般链条条件下使用渐近匹配。
Polymeric materials that couple deformation and electrostatics have the potential for use in soft sensors and actuators with potential applications ranging from robotic, biomedical, energy, aerospace and automotive technologies. In contrast to the mechanics of polymers that has been studied using statistical mechanics approaches for decades, the coupled response under deformation and electrical field has largely been modeled only phenomenologically at the continuum scale. In this work, we examine the physics of the coupled deformation and electrical response of an electrically-responsive polymer chain using statistical mechanics. We begin with a simple anisotropic model for the electrostatic dipole response to electric field of a single monomer, and use a separation of energy scales between the electrostatic field energy and the induced dipole field energy to reduce the nonlocal and infinite-dimensional statistical averaging to a simpler local finite-dimensional averaging. In this simplified setting, we derive the equations of the most likely monomer orientation density using the maximum term approximation, and a chain free energy is derived using this approximation. These equations are investigated numerically and the results provide insight into the physics of electro-mechanically coupled elastomer chains. Closed-form approximations are also developed in the limit of small electrical energy with respect to thermal energy; in the limit of small mechanical tension force acting on the chain; and using asymptotic matching for general chain conditions.