论文标题
贝叶斯非参数单调回归
Bayesian Nonparametric Monotone Regression
论文作者
论文摘要
在许多应用中,有兴趣估算预测因子与结果之间的关系,因为涉及的物理过程已知该关系是单调或以其他方式限制的。我们考虑一种这样的应用 - 从低成本差压力传感器中提取时间分辨的气溶胶浓度。目的是估计单调函数,并推断该函数的缩放第一衍生物。我们提出了贝叶斯非参数单调回归,该回归使用伯恩斯坦多项式基础来构建回归函数,并在回归系数上提前一个差异的过程。 Dirichlet过程的基本度量是零以质量点的有限混合物和截短的正常值。这种构造在聚集基本功能的同时施加单调性。聚类基础函数降低了参数空间,并允许估计的回归函数是线性的。通过提出的方法,我们可以对估计函数的导数进行封闭形式的推断,包括对不确定性的全面量化。在模拟研究中,当真实函数是波浪状的,但是当真实函数是线性时,提出的方法与其他单调回归方法相似。我们将方法应用于新开发的便携式气溶胶监测器,以估计时间分辨的气溶胶浓度。 R软件包BNMR可用于实现该方法。
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.