论文标题

具有质量超临界非线性的分数NLS的归一化解决方案

Normalized solutions for the fractional NLS with mass supercritical nonlinearity

论文作者

Appolloni, Luigi, Secchi, Simone

论文摘要

我们研究了分数非线性schrödinger方程的解决方案$(-Δ)^s u = f(u)$,带有$ l^2 $ -NORM $ \ inorm $ \ int _ {\ Mathbb {r}^n}^n} | u |^u |^2 |^u |^2 \,dx = m $ in sobolev Space $ h^s $ h^s(r MathB)在对非线性$ f $的相当普遍的假设下,我们证明存在基态解决方案,并且在径向对称的情况下产生了多重性。

We investigate the existence of solutions to the fractional nonlinear Schrödinger equation $(-Δ)^s u = f(u)$ with prescribed $L^2$-norm $\int_{\mathbb{R}^N} |u|^2 \, dx =m$ in the Sobolev space $H^s(\mathbb{R}^N)$. Under fairly general assumptions on the nonlinearity $f$, we prove the existence of a ground state solution and a multiplicity result in the radially symmetric case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源