论文标题
力学在肠道肠道的生长和稳态中的作用
The role of mechanics in the growth and homeostasis of the intestinal crypt
论文作者
论文摘要
我们提出了一种专门针对肠道隐窝的组织稳态的机械模型。使用形态弹性杆理论对地下室的生长和变形为基材上的细胞线。在拉格朗日和欧拉机械描述之间交替,使我们能够精确地表征组织稳态的动态性质,从而在欧拉框架中增殖结构和形态是静态的,但是在隐窝中存在Lagrangian材料的积极迁移。假设机械化学的生长,我们确定了体内平衡的必要条件,将完整的,时间依赖的系统降低到表征空间异质的“踏板”状态的静态边界价值问题。我们提取了隐窝稳态的基本特征,例如形态,增殖结构,迁移速度和链路速率。我们还为稳态中的生长和链路动力学提供了封闭形式的溶液,并表明机械化学生长足以生成观察到的隐窝增殖结构。这样做的关键是阈值依赖性机械反馈的概念,它调节了已建立的Wnt信号,以实现生化生长。数值解决方案证明了隐窝形态对稳态增长,迁移和链条的重要性,并强调了该框架的价值,作为研究力学在体内平衡中的作用的基础。
We present a mechanical model of tissue homeostasis that is specialised to the intestinal crypt. Growth and deformation of the crypt, idealised as a line of cells on a substrate, are modelled using morphoelastic rod theory. Alternating between Lagrangian and Eulerian mechanical descriptions enables us precisely to characterise the dynamic nature of tissue homeostasis, whereby the proliferative structure and morphology are static in the Eulerian frame, but there is active migration of Lagrangian material points out of the crypt. Assuming mechanochemical growth, we identify the necessary conditions for homeostasis, reducing the full, time-dependent system to a static boundary value problem characterising a spatially heterogeneous "treadmilling" state. We extract essential features of crypt homeostasis, such as the morphology, the proliferative structure, the migration velocity, and the sloughing rate. We also derive closed-form solutions for growth and sloughing dynamics in homeostasis, and show that mechanochemical growth is sufficient to generate the observed proliferative structure of the crypt. Key to this is the concept of threshold-dependent mechanical feedback, that regulates an established Wnt signal for biochemical growth. Numerical solutions demonstrate the importance of crypt morphology on homeostatic growth, migration, and sloughing, and highlight the value of this framework as a foundation for studying the role of mechanics in homeostasis.