论文标题

(3+1)D拓扑超导体通过(1+1)d拓扑超导体的通勤投影仪模型

Commuting projector models for (3+1)d topological superconductors via string net of (1+1)d topological superconductors

论文作者

Kobayashi, Ryohei

论文摘要

我们讨论了一种在DIII类中为(3+1)d拓扑超导体构建通勤投影仪哈密顿模型的方法。波函数由Kitaev电线的某种字符串网给出,该网络在时间逆转(T)域壁上装饰。我们的哈密顿量是在配备离散形式的旋转结构的通用3D歧管上提供的。我们将看到3D自旋结构如何在T域壁上诱导2D自旋结构(称为2D晶格上的Kasteleyn方向),这使得定义它们上的波动Kitaev电线。打破模型中的T对称性后,我们发现在时间逆转域壁上定义的对称性的不间断残留物。域壁支持受不间断对称性保护的2D非平凡的SPT,这使我们能够根据Hason,Komargodski和Thorngren的最新QFT参数来确定模型的SPT分类。

We discuss a way to construct a commuting projector Hamiltonian model for a (3+1)d topological superconductor in class DIII. The wave function is given by a sort of string net of the Kitaev wire, decorated on the time reversal (T) domain wall. Our Hamiltonian is provided on a generic 3d manifold equipped with a discrete form of the spin structure. We will see how the 3d spin structure induces a 2d spin structure (called a Kasteleyn direction on a 2d lattice) on T domain walls, which makes possible to define fluctuating Kitaev wires on them. Upon breaking the T symmetry in our model, we find the unbroken remnant of the symmetry which is defined on the time reversal domain wall. The domain wall supports the 2d non-trivial SPT protected by the unbroken symmetry, which allows us to determine the SPT classification of our model, based on the recent QFT argument by Hason, Komargodski, and Thorngren.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源