论文标题

使用注意引导框架自动诊断肺栓塞:一项大规模研究

Automatic Diagnosis of Pulmonary Embolism Using an Attention-guided Framework: A Large-scale Study

论文作者

Shi, Luyao, Rajan, Deepta, Abedin, Shafiq, Yellapragada, Manikanta Srikar, Beymer, David, Dehghan, Ehsan

论文摘要

肺栓塞(PE)是一种与高死亡率和发病率相关的威胁生命的疾病。及时诊断和立即开始治疗作用很重要。我们探索了一个深度学习模型,以使用2阶段的训练策略来检测体积增强的胸部CT扫描PE。首先,使用带注释的2D图像训练残留的卷积神经网络(RESNET)。除了分类损失外,在训练过程中还增加了注意力损失,以帮助网络将注意力集中在PE上。接下来,使用经常性网络通过预训练的Resnet提供的特征来依次扫描以检测PE。这种组合允许使用有限和稀疏的像素级注释的图像和大量易于获得的患者级图像标签对培训网络。我们在培训中使用了1,670项稀疏注释研究和10,000多个标记的研究。在具有2,160个患者研究的测试集中,提出的方法在ROC曲线(AUC)下达到了0.812的区域。所提出的框架还能够提供局部注意图,以表明可能的PE病变,这可能有助于放射学家加速诊断过程。

Pulmonary Embolism (PE) is a life-threatening disorder associated with high mortality and morbidity. Prompt diagnosis and immediate initiation of therapeutic action is important. We explored a deep learning model to detect PE on volumetric contrast-enhanced chest CT scans using a 2-stage training strategy. First, a residual convolutional neural network (ResNet) was trained using annotated 2D images. In addition to the classification loss, an attention loss was added during training to help the network focus attention on PE. Next, a recurrent network was used to scan sequentially through the features provided by the pre-trained ResNet to detect PE. This combination allows the network to be trained using both a limited and sparse set of pixel-level annotated images and a large number of easily obtainable patient-level image-label pairs. We used 1,670 sparsely annotated studies and more than 10,000 labeled studies in our training. On a test set with 2,160 patient studies, the proposed method achieved an area under the ROC curve (AUC) of 0.812. The proposed framework is also able to provide localized attention maps that indicate possible PE lesions, which could potentially help radiologists accelerate the diagnostic process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源