论文标题

自偶交叉空间综合体

Self-dual intersection space complexes

论文作者

Agustin, M., Essig, J. T., de Bobadilla, J. Fernandez

论文摘要

在本文中,我们证明有一个规范的Verdier自动偶联交点空间隔离间隔,用于Witt空间中的中间变态,这些空间允许其链接捆绑包,例如折磨品种。如果空间是代数品种,则我们的构造将在混合霍奇模块的类别中进行。我们获得了一个交点空间的共同体学理论,满足了庞加莱二元性,对具有任意深度分层的一类假雄夫有效。主要的新成分是KünnethComplexes的类别;这些是相对于固定分层的共同结构的复合物,以及其他数据,该数据将沿着地层的微不足道结构编纂。与Goreski和McPherson在交叉同源性复合物中显示的相比,我们证明有独特的Künneth综合体满足了第一和第三作者引入的交叉空间配合物的公理。这种独特性意味着与Goreski和McPherson理论相同的方案中的二元性陈述。

In this article, we prove that there is a canonical Verdier self-dual intersection space sheaf complex for the middle perversity on Witt spaces that admit compatible trivializations for their link bundles, for example toric varieties. If the space is an algebraic variety our construction takes place in the category of mixed Hodge modules. We obtain an intersection space cohomology theory, satisfying Poincaré duality, valid for a class of pseudomanifolds with arbitrary depth stratifications. The main new ingredient is the category of Künneth complexes; these are cohomologically constructible complexes with respect to a fixed stratification, together with additional data, which codifies triviality structures along the strata. In analogy to what Goreski and McPherson showed for intersection homology complexes, we prove that there are unique Künneth complexes that satisfy the axioms for intersection space complexes introduced by the first and third author. This uniqueness implies the duality statements in the same scheme as in Goreski and McPherson theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源